Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Oncol ; 15(1): 108, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587694

RESUMO

BACKGROUND: Fragile histidine triad (FHIT) has been documented to play a vital role in various cancers including acute lymphoblastic leukemia (ALL). Keeping in view the plausible role of FHIT gene, we aimed to examine DNA promoter hypermethylation and mRNA expression in ALL cases in Kashmir (North India). METHODS: A total of 66 cases of ALL were analyzed for FHIT mRNA expression and promoter methylation by qRT-PCR and Methylation Specific-PCR (MS-PCR) respectively. RESULTS: FHIT mRNA expression showed significantly decreased expression in ALL cases with mean fold change of 9.24 ± 5.44 as compared to healthy controls (p = 0.01). The pattern of FHIT deregulation in ALL cases differed significantly between decreased and increased expression (p < 0.0001). A threefold decreased expression was observed in 75% of ALL cases than healthy controls (- 3.58 ± 2.32). ALL patients with FHIT gene promoter hypermethylation presented significantly higher in 80% (53/66) of cases (p = 0.0005). The association of FHIT gene hypermethylation and its subsequent expression showed FHIT mRNA expression as significantly lower in ALL cases with hypermethylation (p = 0.0008). B-ALL cases exhibited a highly significant association between the methylation pattern and its mRNA expression (p = 0.000). In low range WBC group, a significant association was found between increased expression (26%) of the cases and methylated (4%)/unmethylated group 86% (p = 0.0006). CONCLUSION: The present study conclude that FHIT gene hypermethylation and its altered expression may be linked in the pathogenesis of ALL and provide an evidence for the role of FHIT in the development of ALL.

2.
Front Pharmacol ; 13: 821344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401182

RESUMO

JAK/STAT signaling pathway is one of the important regulatory signaling cascades for the myriad of cellular processes initiated by various types of ligands such as growth factors, hormones, and cytokines. The physiological processes regulated by JAK/STAT signaling are immune regulation, cell proliferation, cell survival, apoptosis and hematopoiesis of myeloid and non-myeloid cells. Dysregulation of JAK/STAT signaling is reported in various immunological disorders, hematological and other solid malignancies through various oncogenic activation mutations in receptors, downstream mediators, and associated transcriptional factors such as STATs. STATs typically have a dual role when explored in the context of cancer. While several members of the STAT family are involved in malignancies, however, a few members which include STAT3 and STAT5 are linked to tumor initiation and progression. Other STAT members such as STAT1 and STAT2 are pivotal for antitumor defense and maintenance of an effective and long-term immune response through evolutionarily conserved programs. The effects of JAK/STAT signaling and the persistent activation of STATs in tumor cell survival; proliferation and invasion have made the JAK/STAT pathway an ideal target for drug development and cancer therapy. Therefore, understanding the intricate JAK/STAT signaling in the pathogenesis of solid malignancies needs extensive research. A better understanding of the functionally redundant roles of JAKs and STATs may provide a rationale for improving existing cancer therapies which have deleterious effects on normal cells and to identifying novel targets for therapeutic intervention in solid malignancies.

3.
J Gene Med ; 22(11): e3260, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783258

RESUMO

BACKGROUND: Germline genetic variants of human telomerase reverse transcriptase (hTERT) are known to predispose for various malignancies, including glioma. The present study investigated genetic variation of hTERT T/G (rs2736100) and hTERT G/A (rs2736098) with respect to glioma risk. METHODS: Confirmed cases (n = 106) were tested against 210 cancer-free healthy controls by the polymerase chain reaction-restriction fragment length polymorphism technique for genotyping. RESULTS: Homozygous variant 'GG' genotype of rs2736100 frequency was > 4-fold significantly different in cases versus controls (39.6% 17.2%; p < 0.0001). Furthermore, variant 'G' allele was found to be significantly associated with cases (0.5 versus 0.2 in controls; p < 0.0001). Homozygous variant rs2736098 'AA' genotype (35.8% versus 23.8%) and allele 'A' (0.49 versus 0.34) showed a marked significant difference in cases and controls, respectively (p < 0.05). In hTERT rs2736100, the GG genotype significantly presented more in higher grades and GBM (p < 0.0001). Furthermore, the GG variant of hTERT rs2736100 had a poor probability with respect to the overall survival of patients compared to TG and TT genotypes (log rank p = 0.03). Interestingly, two haplotypes of hTERT rs2736100/rs2736098 were identified as GG and GA that conferred a > 3- and 5-fold risk to glioma patients respectively, where variant G/A haplotype was observed to have the highest impact with respect to glioma risk (p < 0.0001). CONCLUSIONS: The results of the present study indicate that hTERT rs2736098 and rs2736100 variants play an important role in conferring a strong risk of developing glioma. Furthermore, hTERT rs2736100 GG variant appears to play a role in the bad prognosis of glioma patients. Haplotypes GG and GA could prove to be vital tools for monitoring risk in glioma patients.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Glioma/mortalidade , Glioma/patologia , Polimorfismo de Nucleotídeo Único , Telomerase/genética , Adulto , Estudos de Casos e Controles , Feminino , Genótipo , Glioma/classificação , Glioma/genética , Humanos , Masculino , Prognóstico , Taxa de Sobrevida
4.
Future Sci OA ; 7(3): FSO663, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33552543

RESUMO

AIM: The implications of molecular biomarkers IDH1/2 mutations and MGMT gene promoter methylation were evaluated for prognostic outcome of glioma patients. MATERIALS & METHODS: Glioma cases were analyzed for IDH1/2 mutations and MGMT promoter methylation by DNA sequencing and methylation-specific PCR, respectively. RESULTS: Mutations found in IDH1/2 genes totaled 63.4% (N = 40) wherein IDH1 mutations were significantly associated with oligidendrioglioma (p = 0.005) and astrocytoma (p = 0.0002). IDH1 mutants presented more, 60.5% in MGMT promoter-methylated cases (p = 0.03). IDH1 mutant cases had better survival for glioblastoma and oligodendrioglioma (log-rank p = 0.01). Multivariate analysis confirmed better survival in MGMT methylation carriers (hazard ratio [HR]: 0.59; p = 0.031). Combination of both biomarkers showed better prognosis on temozolomide (p < 0.05). CONCLUSION: IDH1/2 mutations proved independent prognostic factors in glioma and associated with MGMT methylation for better survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...